PHYSICAL REVIEW E

VOLUME 52, NUMBER 35

NOVEMBER 1995

Parallel diffusion-limited aggregation

Henry Kaufman,' Alessandro Vespignani,* Benoit B. Mandelbrot,"? and Lionel Woog!
! Department of Mathematics, Yale University, New Haven, Connecticut 06520-8283
2Thomas J. Watson Research Center, Yorktown Heights, New York 10598-0218
(Received 21 March 1995)

We present methods for simulating very large diffusion-limited aggregation (DLA) clusters using
parallel processing (PDLA). With our techniques, we have been able to simulate clusters of up to 130
million particles. The time required for generating a 100 million particle PDLA is approximately 13 h.
The fractal behavior of these “parallel” clusters changes from a multiparticle aggregation dynamics to
the usual DLA dynamics. The transition is described by simple scaling assumptions that define a charac-
teristic cluster size separating the two dynamical regimes. We also use DLA clusters as seeds for parallel
processing. In this case, the transient regime disappears and the dynamics converges from the early

stage to that of DLA.

PACS number(s): 02.70.—c, 68.70.+w, 05.40.+j, 02.50.—r

I. INTRODUCTION

A model of irreversible growth to generate fractal
structures was the diffusion limited aggregation (DLA)
model of Witten and Sander [1]. This model accounts for
the origin of fractal structures in a great variety of pro-
cesses: dendritic growth, viscous fingers in fluids, dielec-
tric breakdown, electrochemical deposition, etc. [2,3].
Despite the simplicity of the rules that govern DLA, it
shows unexpectedly subtle and complex properties and
poses theoretical problems of new type [4,5]. To this day,
the asymptotic properties of radial DLA are still not
completely clear because of the discrepancies between the
various measures of fractal dimension [2,6—10] and slow
crossover to the asymptotic regime [11]. To investigate
this and other issues in DLA, one seeks increasingly large
DLA clusters, so that the microstructure becomes ir-
relevant and the asymptotic regime can be observed and
analyzed. To that end, we propose the parallel DLA
(PDLA), a variant of DLA, that uses a multiprocessor
parallel computer. By parallelizing the cluster aggrega-
tion, we generated PDLA clusters of 100 million particles
in 13 h on a 32-processor IBM power visualization sys-
tem (PVS) computer. Therefore, the simulation time is
no longer the limiting factor in generating very large
clusters.

However, a subtle difficulty arises. The fact that more
than one particle is diffusing at the same time introduces
some interference effects in the dynamical process. The
number of processors used in the simulation is the com-
putational counterpart of the density of diffusing parti-
cles. This means that the early growth stages of a PDLA
are in a multiparticle diffusion aggregation (MPDA) [12]
regime that drifts to the DLA regime for larger sizes. A
transient region is therefore present in the behavior of

*Present address: Instituut Lorentz, Leiden University, P.O.
Box 9506, 2300 RA Leiden, The Netherlands.

1063-651X/95/52(5)/5602(8)/$06.00 52

several quantities of the PDLA. From simple scaling as-
sumptions we can characterize the transient region and
find the behavior of the characteristic cluster size for
which the dynamics become identical to DLA’s dynam-
ics.

To avoid the effects of the dynamical drift and to speed
up the convergence towards the DLA regime we propose
a combination of serial and parallel computing. We
present large clusters simulated by a PDLA process
growing on DLA cores. The cores have been generated
on a serial machine and are used as the seeds of our
larger clusters. In this way the PDLA process already
starts in a low particle density regime corresponding to
the usual (serial) DLA.

The study of PDLA clusters deserves further analysis,
particularly to examine possible differences between the
asymptotic structure of PDLA and DLA. Nevertheless,
this method seems very promising in that it allows simu-
lations to go beyond the present limitations of serial com-
puters.

Section II introduces the algorithm to generate PDLA
and discusses the details involved in creating and analyz-
ing such large clusters. Section III presents the results
from analyzing the clusters and differences between DLA
and PDLA are discussed. Section IV describes the re-
sults obtained in the case of clusters obtained from
PDLA growing on a DLA core. Finally Sec. V discusses
results and perspectives of the method.

II. PARALLEL DLA

DLA is simulated by placing a particle at a random lo-
cation on a “birth” circle that is at some fixed distance
from the maximum radius of the existing cluster. The
new particle undergoes Brownian motion until it comes
within a fixed “sticking distance” to the cluster (we use -+
of a particle diameter for the sticking distance). At that
point, the particle sticks to the clusters and a new particle
is added on the birth circle, and the process continues.
The original random walk DLA model is very simple but

5602 ©1995 The American Physical Society

52 PARALLEL DIFFUSION-LIMITED AGGREGATION

biases due to approximation in the algorithm can intro-
duce instabilities that dominate large scale properties of
the structure [13]. These parameters are the random
walk step size, the distance at which the random walk
starts, etc. Our algorithm lets the particle take the larg-
est step possible, without landing on the DLA. If the
particle exits the birth circle, it is projected back with the
“first-hit”” probability distribution (see Appendix A) that
models correctly the Laplacian boundary conditions of
DLA. The particles thus wander ““infinitely” until they
first hit the DLA.

The above process is extremely time and memory con-
suming, even with the various efficiency schemes in prac-
tice, hence few people could generate clusters greater
than 10 million particles. A single cluster of 100 million
particles with our current algorithm would require a sin-
gle computer for two to three weeks. This is possible, but
very impractical since several clusters are required for re-
liable analysis.

A parallel computer, however, accelerates the process
linearly in the number of processors. We accessed the
IBM power visualization system (PVS), whose architec-
ture is well suited for simulating DLA in parallel. The
PVS contains 32 CPU’s. Each processor has 16 mega-
bytes of “private” random access memory (RAM), as well
as access to 512 megabytes of shared memory. This ar-
chitecture is ideal for PDLA because the cluster can be
stored in the shared memory and can be accessed and
modified quickly by any processor. Furthermore, the
simulation of PDLA is a ‘“read mostly” process, because
most of the time the particles wander around the PDLA,
and access the PDLA structure without changing it.
Only when a particle becomes close enough to stick to
the cluster, is the PDLA modified by adding the new par-
ticle. This is an important characteristic, because, to in-
sure the correctness of the PDLA data structure, only
one processor may modify the shared PDLA data struc-
ture at any given time, whereas many may read it.

This mutually exclusive behavior is implemented as a
semaphore. When a processor is ready to stick its parti-
cle to the PDLA, it sets a semaphore that insures ex-
clusive write access. If another processor is currently
modifying the cluster, this processor must wait until the
other has released the semaphore (i.e., finished making its
modification). This type of waiting often yields poor per-
formance in parallel algorithms. Thus, the read mostly
behavior of the DLA simulation is important, because
time-consuming processor interferences occur rarely.
Furthermore, because the wandering particles do not
“see”” each other in our simulation, there is very little in-
terprocess communication overhead that could also
reduce the efficiency of the parallelism.

The actual implementation we use is similar in spirit to
that of previously developed algorithms [14] but with
great attention to the efficiency of storage. The algorithm
uses a data structure called a quad-tree [15]. A quad-tree
is a hierarchical subdivision of a square region of the
plane into smaller and smaller square subregions. Each
level of the hierarchy contains squares that are half the
width of the next level up in the hierarchy. Because a re-
gion is subdivided only if it contains particles, memory is

5603

allocated only for the regions of space occupied by the
PDLA. We have found PDLA’s to maintain fairly con-
stant average density, so we preallocate a fixed amount of
quad-tree memory for the entire PDLA, which is propor-
tional to the number of particles to be generated.

A given region of the quad-tree is represented by a
block of four pointers. The subregions of that region that
are empty have null pointers, while the occupied subre-
gions point to other blocks of pointers. At a fixed max-
imum subdivision level, the leaf pointers point to lists of
particles. We have found, in practice, that a minimum
region size of eight particle diameters works well in the
tradeoff between particle list searching efficiency and
memory usage. This requires us to store 14 levels of sub-
divisions to represent a region of width 128 K (1 K=103)
particle diameters in order to adequately store a 10® par-
ticle PDLA whose diameter is around 90 K diameters.

To further optimize memory usage, we strove to mini-
mize the memory requirements for the particle list in the
leaves of the quad-tree. In our previous implementation,
particles were represented by four-byte floating-point
numbers for each coordinate, and a four-byte ‘“next”
pointer, which pointed to the subsequent particle in its
region. However, 12 bytes per particle prohibited reach-
ing clusters of 10® particles on any of the computers we
had available. Furthermore, the subparticle accuracy of
the coordinates would begin to drop as the PDLA radius
increased to beyond 10 particle units. The average max-
imum radius for our 108 PDLA’s is 4.5X10° which
yields a subdiameter accuracy of 5L in the position of the
outer particles because 15 of the 23 bits in the float’s frac-
tion must be used to store the particle’s integer position.

We observed that the traversal path of the quad-tree
from the root node to the leaf regions encodes global po-
sition information. Thus, we store only local particle
coordinates within the 8X8 leaf region with one-byte
fixed-point values for each coordinate. This gives us ac-
ceptable position accuracy to within & of a particle di-
ameter. Using local coordinates enabled us to store parti-
cle positions with two bytes instead of eight bytes.

We also wanted to optimize the particle list data struc-
ture. By taking advantage of the fact that there are al-
most always several particles falling within a single re-
gion, we could optimize the use of the “next” pointer by
storing particles in chunks with a single “next” pointer.
We took density distribution data from several 10°
PDLA’s to minimize the following discrete memory func-
tion of the particle chunk size N,. The density distribu-
tion N (s) is the distribution of the number of regions
with density s,

, - (1)
s=1 NP

Ng(N,)=3 N(s) [—s—

Fmem(N,)=Ne(N,X(N,S, +5,) , 2)

where f ., (N,) is the total memory required, N,(N,) is
the number of particle chunks of size N, required to store
all the particles, S, is the size of an individual particle po-
sition (2 bytes), and S, is the size of the “next” pointer (4

5604

bytes). The minimum value for f,.,(N,) optimizes the
tradeoff between the cost of the 4 byte “next” pointer and
the unused particle slots for densities that do not exactly
fit into an integer number of chunks. For regions of eight
particle diameters, the optimum bunch size is seven, at an
average cost of 3.21 bytes per particle. In practice, we
use six, so that the total chunk size is 16 bytes to
effectively use the hardware’s memory-aligned cache.
This only increases the total memory usage by less than
1%. The total memory required for storing 108 particles
is thus 306 megabytes. Using our naive storage scheme,
with floating point coordinates would have required 1200
megabytes, and 600 megabytes with the fixed point coor-
dinates. The quad-tree requires about 58 megabytes for a
108 particle cluster.

When a particle is added to the PDLA, the quad-tree is
traversed from the root node. Any empty regions are al-
located in the quad-tree, and finally the particle is added
at the end of the last chunk of particles in its region, or a
new chunk is added if the last chunk is full. The “next”
pointer functions as a particle counter for nonfull chunks.

As the PDLA is being formed, the particles are written
to a file. This way, the file contains all the particles, in
the order that they first appeared. This order is impor-
tant for some types of analysis. For example, to establish
parent-child connectivity relationships between two con-
nected particles, one needs to know which particle is old-
er. Due to the ordering constraint in the file, we can not
take advantage of the concise representation of the parti-
cles in the quadtree. The particles’ absolute positions are
written in the file as 4-byte fixed-point integers for each
coordinate. This yields large files of 8 X 10% bytes for 108
particle clusters. We can thus only store one large
PDLA on a disk at a time. In order to generate several
DLA'’s, say, over a weekend, each PDLA is immediately
written out to an 8 mm streaming tape as soon as it is
complete. Each tape can store up to three 10® particle
clusters.

Many analyses that we have run simply involve sequen-
tially reading each particle, outputting some intermediate
values and then accumulating some final statistics at the
end. This type of analysis is done for computed mo-
ments, max-radius, mass-radius histograms, center of
mass, Laplacian relaxation, and printing the PDLA.
Since the entire PDLA does not need to be stored in
memory, these analyses can be run on any workstation by
reading the PDLA directly off the tape. Other analyses
require reading the entire PDLA into memory and build-
ing the quadtree hierarchy in order to perform efficient
geometric query operations on the PDLA. These include
on- and off-center mass-radius computation, crosscut
analysis, gap measurements, box counting, and angle of
incidence measurements (if the angle is computed as the
particle is added to the PDLA from the file). These runs
only require the position information, without any de-
tailed order of arrival information. Thus the compact
run-time representation described above may be used.
Other analyses, however, require geometric and order in-
formation, so the particles may not be grouped in lists,
but must reside separately, each with a next pointer.
This representation is the most costly in terms of

KAUFMAN, VESPIGNANI, MANDELBROT, AND WOOG 52

memory, since each particle occupies 6 bytes of storage.
The order information is important in establishing or-
dered connectivity information, such as parent-child rela-
tions, or recursive traversal of the PDLA. The following
analyses require this richer information: Horton-Strahler
branch order measurements [9,16], number of offspring
measurements, and branch mass measurements.

With these techniques it is possible to generate clusters
up to 130 million of particles. The CPU time required is
drastically diminished, and we need approximately 13
hours to generate a 100 million particle cluster. In this
way we have generated twenty 100 million particle
PDLA’s as well as a single 130 million particle PDLA.
At this point, the cluster size is only limited by memory
requirements, and not simulation time.

Of course, PDLA is not equivalent to DLA. The fact
that more than one particle is diffusing, generates some
interferences that can affect the properties of the final
structures. In particular, it is possible to study some
finite transients in the fractal properties of the clusters.
In the next section we will analyze these transients.

III. FRACTAL ANALYSIS OF PDLA

Figure 1 shows a PDLA cluster of 100 million parti-
cles. To the eye, this cluster is extremely similar to those
produced by the single particle process. In our tech-
nique, however, more than one particle is diffusing con-
temporaneously and interferences occur because two or
more particles may be wandering simultaneously around
the same area of the PDLA. A first kind of interference
occurs when a particle sticks, and a second particle finds
itself overlapping with the newly attached particle. The
second kind of interference occurs when two particles
might decide to stick to the same particle at the same
time. Only one processor may modify the DLA at a
time, so one particle, chosen arbitrarily, is allowed to

FIG. 1. Parallel-DLA aggregate of 100 million particles.

52 PARALLEL DIFFUSION-LIMITED AGGREGATION

stick first. When the second particle is allowed to stick, it
discovers that it overlaps with the first particle. These
two types of interference are readily observable by check-
ing that the closest particle in the DLA is not overlap-
ping with the wandering particle. An overlap would im-
ply that another particle “suddenly” appeared, since par-
ticle steps in Brownian motion are calculated so that they
never overlap with the DLA. When this type of overlap
occurs, the particle is rejected, thus the DLA is still
guaranteed not to have any overlapping particles, as in
serial DLA. A third, and more subtle interference is pos-
sible: while the particles might not overlap, the trajecto-
ry that they undergo is different, since they do not “see”
all the particles that were launched before them. This
differs from DLA, where every wandering particle can be
affected by all previously launched particles. In PDLA, a
particle can only be affected by all particles except for the
last 31, since they are still wandering when the new parti-
cle is released.

These interactions are more pronounced for small
PDLA'’s and they have the effect of slightly increasing the
density. For large PDLA however, the change is very
small (only one particle in 10000 overlaps as the cluster
size approaches 100 million particles; see Fig. 2).

From a physical point of view, this situation corre-
sponds to a kinetic fractal aggregation in a particle bath
with a finite density p of diffusing particles. This
phenomenon, called multiparticle diffusive aggregation
(MPDA) [12], has been studied in the past both numeri-
cally and experimentally. The difference is that in our
case the particle density is not kept constant during ag-
gregation. In fact, the number of diffusing particles is
constant, namely, the number of processors we use, while
the structure grows and the number of active sites ex-
posed to growth processes is increasing. This implies

10%

1072 |—

1074 [~

N overlaps and interferences per particle

10 | J | | |
10° 10! 102 103 104 105 108
N Particles
FIG. 2. Number of overlaps (solid lines) and interference re-
jects (dotted lines) per particle as the PDLA grows. Triangles,
squares, and circles correspond to n =4, 16, 32 processors, re-
spectively.

5605

that as the active interface of the cluster increases, the
density of the diffusing particles decreases. Therefore,
particles around the structure have a smaller probability
of interacting in the growing space of diffusion near the
active region.

Thus we start with a MPDA regime for small cluster
sizes but, as the structure grows, the dynamics ap-
proaches that of DLA. Since the dynamics does not ap-
proach the usual DLA process except for large sizes, we
expect several quantities to show a transient region whose
extent depends upon the numbers of processors used, i.e.,
the starting density of diffusing particles.

The best known and best established property of DLA
is the mass-radius scaling relation

N(R)~R?, (3)

where N (R) is the number of particles inside a circle of
radius R [17]. The exponent D is the cluster’s fractal di-
mension and it is extracted from the diagram of InN (R)
versus InR. For DLA this scaling behavior is confirmed
on several decades, and for a number of particles N up to
N =107, D=1.71 as inferred since the very small clusters
were used [1,6].

We compared the mass-radius scaling behavior of
PDLA and DLA. Given the large amount of data stored
for each cluster we developed a particular algorithm for
obtaining the mass distribution efficiently. The algorithm
is sketched in Appendix B. Figure 3 shows the doubly
logarithmic plot of the number of particles versus the
cluster’s radius for the different number of processors
used. For very large clusters, the mass-radius curve col-
lapses onto DLA, even for the 32-processor PDLA.
However, as more processors are used, it takes longer for
the PDLA clusters to approach DLA behavior. This is
indeed the transient due to the drift from the MPDA re-
gime to the DLA regime. Figure 4 focuses on the small
cluster region in order to show the behavior of the mass-
radius plot in the transient region.

The two dynamical regimes are characterized by the
density of diffusing particles in the active region of the
cluster, namely, the growing interface of the cluster. This
growing interface is formed by N’ points where

, _4dN D—1 (D—1)/D
~2Y _Rr ~ , 4
N 4R N (4)

where we used the fact that N~RP. We can define the
effective density of diffusing particles as

n

N(D—l)/D ’ (5)

~ "
p NI
where n is, in our case, the number of processors used in
the cluster generation. The serial DLA regime is
recovered in the limit when p <<1, and the transient is
characterized by a density p~1. We can define, there-
fore, a characteristic length by

n

pc"'wﬁl. (6)

Here N, gives the characteristic cluster mass discriminat-
ing the aggregation regimes, and its dependence on the

5606

KAUFMAN, VESPIGNANI, MANDELBROT, AND WOOG 52

Rayd

FIG. 3. Doubly logarithmic plot of the
mass-radius scaling behavior, i.e., the radius of
gyration R, with respect to the number of
particle N. The plots of PDLA with n=1, 2,
4, 8, 16, and 32 (from top to bottom) proces-
sors collapse onto the DLA one (n =1 proces-
sor) for N=~105. The radius unit length is the
particle’s diameter; i denotes the number of
Pprocessors.

10°
10 102 10° 10 108

number of processors used is
N,~n%, (7)

with 6=D /(D —1). This relation gives us an indication
of the extent of the transient region as a function of the
number of starting processors. If N, is the only charac-
teristic length introduced in the PDLA, then the mass-
radius relation should be described by the following scal-
ing behavior:

N

R~N/D
f N,

, (8)

where f(x)~const for x >>1, and f(x)~x? for x <<1.
According to this scaling assumption the data obtained
for the mass-radius relation for various values of n should

collapse onto the same universal curve f(x), when
In(R /N'/P) is plotted against In(N /n?) using the correct
value of D. By using the value D =1.7 we obtain the best
data collapse for 6=~2.7 (Fig. 5). That is in reasonable
agreement with the value estimated by our scaling as-
sumption 6=2.4.

This analysis implies that PDLA can be considered as
joining the DLA dynamical regime for cluster size
N >>N_, with N, increasing with n like a power law with
exponent 6. Therefore, we have to generate larger clus-
ters as we increase the number of processors if we want a
good approximation of DLA clusters.

Several other quantities could be affected by this tran-
sient, even for larger cluster sizes. In fact, circular DLA
shows a very complex behavior with several departures
from self-similarity [7,11,10]. This scenario implies an

10°

2 processors

4 processors

Roy/Rgyr!

8 processors

16 processors

32 processors

FIG. 4. Plot of the mass-radius relation for
PDLA of n =2, 4, 8, 16, and 32 processors. To
visualize the transient region, the radius of
. gyration of PDLA’s is normalized with respect
to the radius of gyration of DLA (n =1).

10° 10! 102 10° 10*

52 PARALLEL DIFFUSION-LIMITED AGGREGATION

5607

l ' T

Ryl (N'P)

|

FIG. 5. Data collapse for the mass-radius
relation from various values of n by using the
scaling functions of Eq. (8).

1072 10° 102 10*
Nin??

unusual approach to asymptotic self-similarity, in which
different numerical characteristics of DLA have different
crossover to self-similarity [7]. The origin of this “drift”
deviating from simple self-similarity can be found in the
dynamical aspects of the phenomenon. In particular, the
old part of the cluster, i.e., the frozen region that will not
grow in the future, preserves a memory of the dynamical
process by which it has been generated. In this perspec-
tive, the fact that the PDLA changes the dynamical
properties in the early growth stage might have several
consequences on the future fractal properties of the re-
sulting structure. For this reason the analysis we have
shown on the mass-radius scaling behavior does not take
into account many other geometrical and morphological
properties of the generated structure. Further analysis is
in progress and will be presented elsewhere.

IV. PDLA GROWN FROM A DLA CORE

The PDLA algorithm yields very large clusters in a
reasonable amount of time. However, the dynamical
transient described in Sec. III reduces the effectiveness of
this method for studying ordinary DLA. In fact, the
more processors we use, the larger the aggregate has to
be before we can consider the two aggregation processes
as indistinguishable. To reduce this effect we begin the
simulation with an existing DLA “core.” Of course, if
this cluster seed is large enough, the PDLA starts in the
usual dynamical regime (DLA regime) and no transient
should be detected in the scaling behavior. In this way
the cluster does not have a memory of a different dynami-
cal regime and the aggregates obtained are not affected
by the multiparticle interaction effects. Thus, we use the
PDLA process only after the finite density effects are
negligible.

To test this method, we repeated the analysis on the
mass-radius behavior for clusters grown with DLA cores
of N=10%10%10° particles. Figure 6 shows the transient

108

region of PDLA with and without a DLA core. It is pos-
sible to see that for clusters grown with a DLA seed, the
transient disappears and the mass-radius relation does
not show discrepancies with respect to DLA. We thus
have combined the DLA with our PDLA in order to gen-
erate vary large clusters not affected by the transients
that are present in the early stage of PDLA growth.
From a computational point of view, this method allows
us to have a major improvement in the CPU time needed
to generate the cluster, while avoiding the drift induced
by the initial multiparticle dynamics. Nevertheless, as al-
ready mentioned the parallel diffusion of particles might
induce other effects on DLA geometry and a more care-
ful study is required to have the certainty that the two
processes are asymptotically identical.

V. CONCLUSIONS

This paper presents a method to generate very large
DLA clusters by using a parallel computer. This allows
us to obtain a linear speed improvement as a function of
the number of processors, and at this point the cluster
size is only limited by run-time memory usage and output
storage space, and not by simulation time. This method
makes it possible to reach cluster sizes beyond the usual
serial computer’s capacity, but introduces some interfer-
ence effects due to the simultaneous diffusion of particles.
From a physical point of view, this corresponds to a drift
from a multiparticle diffusion regime for small sizes to a
DLA regime for larger sizes. This transient is present in
the early stages of the growth and clearly depends on the
number of parallel processors used. From simple scaling
assumptions it is possible to characterize the behavior of
the characteristic cluster size that discriminate between
the two regimes and its scaling with respect to the num-
ber of processors.

Finally, we present the results for PDLA clusters
grown on a seed defined by a DLA cluster. By using this

5608

KAUFMAN, VESPIGNANI, MANDELBROT, AND WOOG 52

1M core

10K core

100K core

Ryl (N'P)

FIG. 6. PDLA’s mass-radius behavior with
(bold curves) and without DLA core. The ra-
dius of gyration is normalized with the DLA
one. In the case of PDLA with existing DLA
core, the transient region disappears. 1 M
denotes (10°) particles and 10 K denotes 10*
particles.

102 10° 10t 10° 10° 107

method we can avoid the problems due to the dynamical
drift and speed up the convergence of the PDLA towards
the usual DLA.

ACKNOWLEDGMENTS

We are indebted to Lewis Siegel for help in figuring out
the PVS and for organizing and running all the simula-
tions. We thank Yuval Peres for suggesting the Moebius
transformation described in Appendix A. We also wish
to thank IBM Yorktown for generously allowing us to
use the PVS and the disk storage for large DLA files.
The investigations carried out at Yale University were
supported by the Office of Naval Research under Grant
No. N00014-90-J-1026, and were performed on two IBM
RS/6000 RISC computers, made available at Yale by
IBM’s Technical Computing Systems Group (Mathemati-
cal Sciences Area). H.K. is grateful to Harvey Blech who
started him on the path to physics.

APPENDIX A

Often particles that wander far away from the cluster
are ‘“killed” at some killing radius. However, we bypass
killing; in fact, we project the particle back to the birth
radius with the Poisson kernel which is the correct first-
hit probability distribution for Brownian motion. Here is
an elegant way to implement this kernel by a Moebius
transformation. Normalize the particle distance H from
the birth circle of radius R to d =H /R, the distance to
the unit circle. The first-hit distribution for a particle at
distance d from outside the unit circle is equivalent to
that of a particle on the inside of the circle at distance
r=1/(1+d) from the origin. A point is generated with
the proper distribution taking a uniform random unit
complex number z, and performing the Moebius transfor-
mation

=z+r
14+rz ~

(A1)

The Moebius transformation maps the complex unit cir-
cle on the complex unit circle, with fixed points at z =1,
and z=—1. The point w will have the correct distribu-
tion for the first-hit location of the original point at dis-
tance H. Its peak at w =1 narrows as r approaches 1, as
expected since the particle has a higher probability of
reentering nearby, when it is close to the circle.

APPENDIX B

Our mass distribution computations use the quad-tree
as a way to efficiently measure the mass in large regions.
A naive approach to computing the mass within a region
could be to compare every particle in the cluster with the
region and only count those particles that fall within the
region. To avoid this approach, we take advantage of the
hierarchical nature of the quad-tree. To each node of the
quad-tree we add a value indicating how many particles
fall within that node’s square. This value is easily com-
puted for every node by a single depth-first traversal of
the quad-tree, since each node’s value is simply the sum
of its four children’s values. To compute efficiently how
many particles fall within a given circle, the quad-tree is
traversed from the root and the square enclosing each
node is compared with the query circle. Nodes which fall
completely within the circle are counted by simply add-
ing the number stored in the node, and no further traver-
sal is required. A node which falls completely outside the
circle is rejected, and similarly not traversed any more. If
a node overlaps with the boundary of the circle, its four
children are traversed recursively. If the tree has been
traversed until a leaf node containing actual particles is
reached, and it is still on the boundary, then every parti-
cle within that node is checked against the circle, and
counted only if its center falls within the circle. This last
case only occurs for a small percentage of the total circles
that are counted, so the algorithm is very fast. Major
time savings are achieved for large nodes that fall com-

52 PARALLEL DIFFUSION-LIMITED AGGREGATION

pletely inside or outside the circle, because all of the par-
ticles are essentially checked with only one square-circle
comparison. In the average case of randomly distributed
points in the plane, the number of leaf nodes checked is
proportional to the circle’s radius R. Since DLA is frac-
tal, however, the number of leaves checked grows as
RP~!, For the largest circles in a 10® particle cluster, the
number of particles actually checked is on the order of a
few thousand.

This algorithm has been extended to process arbitrary
boolean combinations of circles. This is necessary for
mass within annuli computations (the difference between
two circles), or off-center mass-radius computations
which require counting the particles that fall within the
intersection of two annuli. This method also works for
computing the particles that overlap with a circle at some
radius. An annulus is constructed whose boundary is one
particle radius from the given circle on either side, and
the particles whose centers fall within this annulus over-
lap with the given circle. This measurement is required
to compute gap angles between particles that are at some
radius from the center particle and for cross-cut dimen-
sion calculations.

5609

The basic idea for the boolean combinations is to con-
sider in advance all the possible cases when one should
accept, reject or traverse the quad-tree further. For ex-
ample, when considering the difference of two regions, if
a node falls completely within the ‘“negative” region, or
completely outside the “positive’ region, it can be reject-
ed immediately. If the node falls completely within the
“positive” region and outside the “negative” region, then
it can be accepted. Otherwise, the quad-tree must be
traversed further. All the boolean relations can be evalu-
ated in this way recursively, by forming a tree of opera-
tions whose nodes represent the boolean operations, and
whose leaves are the basic geometric query shapes (circles
or rectangles). The final geometric query method is thus
doubly recursive. The quad-tree is traversed recursively,
and each node is checked recursively against the boolean
operations tree. Though this method may seem to be ex-
tremely thorough, it was not very difficult to implement.
Once the infrastructure was in place, it was easy to add
new query shapes for new kinds of analyses (e.g., rectan-
gles). Furthermore, the method runs very quickly in
practice. In fact, for most of our analyses, the time is
dominated by reading the PDLA off the tape.

[1] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[2] T. Vicsek, Fractal Growth Phenomena (World Scientific,
Singapore, 1992).

[3] For a recent review see Fractals in Natural Science, edited
by T. Vicsek, M. Schlesinger, and M. Matsushita (World
Scientific, Singapore, 1994).

[4] L. Pietronero, A. Erzan, and C. Evertsz, Phys. Rev. Lett.
61, 861 (1988); R. Cafiero, L. Pietronero, and A. Vespig-
nani, ibid. 70, 3939 (1993).

[5] T. C. Halsey, Phys. Rev. Lett. 72, 1228 (1994).

[6] P. Meakin, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. Lebowitz (Academic, New
York, 1988), Vol. 12, p. 335.

[7] B. B. Mandelbrot, Physica A 191, 95 (1992).

[8] C. Evertsz, Phys. Rev. A. 41, 1830 (1990).

[9] P. Ossadnik, Phys. Rev. A 45, 1058 (1992); Physica A 195,

319 (1993).

[10] C. Amitrano, A. Coniglio, P. Meakin, and M. Zannetti,
Fractals 1, 840 (1993).

[11] B. B. Mandelbrot, H. Kaufman, A. Vespignani, I. Yeku-
tieli, and C. H. Lam, Europhys. Lett. 29, 599 (1995).

[12] R. Voss, Phys. Rev. B 30, 334 (1984).

[13] R. Voss, Fractals 1, 141 (1993).

[14] S. Tolman and P. Meakin, Phys. Rev. A 40, 428 (1989).

[15] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer
Graphics, Principles and Practice (Addison-Wesley, Read-
ing, MA, 1990).

[16] I. Yekutieli, H. Kaufman, and B. B. Mandelbrot, J. Phys.
A 27,275 (1994).

[17] With R is usually indicated the gyration radius of the clus-
ter (see Ref. [6]).

